Ca2+ transient evoked by chemical stimulation is enhanced by PGE2 in vagal sensory neurons: role of cAMP/PKA signaling pathway.
نویسندگان
چکیده
The effect of prostaglandin E(2) (PGE(2)) on chemical stimulation-evoked calcium (Ca(2+)) transient was investigated in isolated vagal sensory neurons of the rat using fura-2-based ratiometric Ca(2+) imaging. Application of capsaicin (3 x 10(-8) to 10(-7) M; 15 s) caused a rapid surge of intracellular Ca(2+) concentration in small- and medium-size neurons; the response was reproducible when >10 min elapsed between two challenges and was absent in nominally Ca(2+)-free solution. After pretreatment with PGE(2) (3 x 10(-7) M; 5 min), the peak of this capsaicin-evoked Ca(2+) transient was increased by almost fourfold, and its duration was also prolonged. This augmented response to capsaicin induced by PGE(2) gradually declined but remained higher than control after 15-min washout. Similarly, PGE(2) pretreatment also markedly enhanced the Ca(2+) transients induced by other chemical stimulants to C neurons, such as phenylbiguanide (PBG), adenosine 5'-triphosphate (ATP), and KCl. The Ca(2+) transients evoked by PBG, ATP, and KCl were potentiated after the pretreatment with PGE(2) to 242, 204, and 163% of their control, respectively. This potentiating effect of PGE(2) could be mimicked by forskolin (10(-6) M; 5 min), an activator of adenylyl cyclase, and 8-(4-chlorophenylthio)adenosine-3'-5'-cyclic monophosphate (CPT-cAMP; 3 x 10(-6) M, 10 min), a membrane-permeable cAMP analogue. Furthermore, the potentiating effects of PGE(2), forskolin, and CPT-cAMP were abolished by N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89; 10(-5) M; 15-20 min), a protein kinase A (PKA) inhibitor. In summary, these results show that PGE(2) reversibly potentiates the chemical stimuli-evoked Ca(2+) transients in cultured rat vagal sensory neurons, and this potentiating effect is mediated through the cyclic AMP/PKA transduction cascade.
منابع مشابه
Ca Transient Evoked by Chemical Stimulation Is Enhanced by PGE2 in Vagal Sensory Neurons: Role of cAMP/PKA Signaling Pathway
Gu, Qihai, Kevin Kwong, and Lu-Yuan Lee. Ca transient evoked by chemical stimulation is enhanced by PGE2 in vagal sensory neurons: role of cAMP/PKA signaling pathway. J Neurophysiol 89: 1985–1993, 2003. First published December 4, 2002; 10.1152/jn.00748.2002. The effect of prostaglandin E2 (PGE2) on chemical stimulation-evoked calcium (Ca 2 ) transient was investigated in isolated vagal sensory...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملProstaglandin E2 Inhibits Histamine-Evoked Ca2+ Release in Human Aortic Smooth Muscle Cells through Hyperactive cAMP Signaling Junctions and Protein Kinase A
In human aortic smooth muscle cells, prostaglandin E2 (PGE2) stimulates adenylyl cyclase (AC) and attenuates the increase in intracellular free Ca2+ concentration evoked by activation of histamine H1 receptors. The mechanisms are not resolved. We show that cAMP mediates inhibition of histamine-evoked Ca2+ signals by PGE2 Exchange proteins activated by cAMP were not required, but the effects wer...
متن کاملActivation and recovery of the PGE2-mediated sensitization of the capsaicin response in rat sensory neurons.
Pro-inflammatory prostaglandins are known to enhance the sensitivity of sensory neurons to various modalities of stimulation, including the excitatory chemical agent, capsaicin. In this report, we examined the capacity of prostaglandin E2 (PGE2) to enhance the capsaicin response recorded from sensory neurons isolated from embryonic rats and grown in culture. Previous work demonstrated that the ...
متن کاملEpinephrine enhances the sensitivity of rat vagal chemosensitive neurons: role of 3-adrenoceptor
Gu Q, Lin Y-S, Lee L-Y. Epinephrine enhances the sensitivity of rat vagal chemosensitive neurons: role of 3-adrenoceptor. J Appl Physiol 102: 1545–1555, 2007. First published December 14, 2006; doi:10.1152/japplphysiol.01010.2006.—This study was carried out to determine whether epinephrine alters the sensitivity of rat vagal sensory neurons. In anesthetized rats, inhalation of epinephrine aeros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2003